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Transition between stimulated backscattering and soliton 
exchange in ferrites 
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Laboratoire de Physique Math6matique. URA-CNRS 768, Universis de Montpellier 11, 34095 
Montpellier Cedex 5, France 

Received 17 October 1994, in final form 6 February 1995 

Abstract. We study the interaction of Ihree monochmatic polarized eleckomagnetic waves 
in a ferromagnetic dielecuic, and show that it is governed by the three-wave resonant interaction 
system. a completely integrable system. We solve the resonance condition and classify the cases 
where the interaction occurs; for high frequencies, we characterize the solutions completely. 
Thus we find transition points between the regimes where stimulated backscattering of one of 
the waves or soliton exchange occurs. 

1. Introdnetion 

The propagation of electromagnetic waves in ferromagnetic media was studied in the late 
1950s, in relation to femte devices at microwaves frequencies. Highly nonlinear effects 
were observed. Among them, we are here especially interested in the resonant interaction 
of three waves. As early as 1958, Tien and Suhl [l] described such an interaction in a 
ferrite, in order to apply this effect to build an amplifier. Recently, various studies of 
this type of interaction, stilI in femtes, have been published. They mainly concem layer 
materials [2,31, and show the generation of uniform magnetic precession and of waves with 
opposite directions. Apart from a discussion, based on experimental data, of the possibility 
of observing these effects, these works derive theoretically the wave equations that describe 
the interaction; that is the so-called three-wave resonant interaction (3wRI) system, which is 
somehow universal, in the sense that it occurs in various physical domains (hydrodynamics, 
plasma physics, and so on; a review of the abundant literature that exists on this subject can 
be found, e.g., in [4]). Important theoretical work has been done on this ‘universal‘ model. 
It has been shown, using the multiscale expansion method, that it can be derived as an 
asymptotic mode from very e general evolution equations allowing wave propagation [5,6]. 
Furthermore, it is completely integrable by the inverse scattering transform (IST) method, 
and the properties of its solutions have been studied in detail (see [4], and the literature 
quoted in it). 

The aim of the present article is to study the interaction between three electromagnetic 
waves in a ferro- (or ferri-)magnetic medium, by a rigorous use of the~multiscale expansion 
method, and application of the results of soliton theory. The evolution of the electromagnetic 
field H and the magnetization density M in such a medium is governed by the equations: 

(1) 

(2) 

I a2 
c2 a t 2  

-V(V.H) + AH = - - (H + M )  

aM - = -p&M A H  
at 
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where /LO is the magnetic permeability in vacuum, S the gyromagnetic ratio and c = l/& 
is the speed of light based on the electric permittivity 2 of the medium; all formulae below 
will be given in tenns of the rescaled variables defined in appendix A (Al). 

Equation (1) follows directly from the Maxwell equations in a dieletric medium with a 
linear constitutive relation for the electric paa; equation (2) describes the evolution of the 
magnetization density in a ferro- or fem-magnetic medium; this model is the basis of most 
studies of electromagnetic wave propagation in ferrites [7-9], in particular ferromagnetic 
resonance. The use of this model needs some further assumptions: ow medium is assumed 
to be infinite and isotropic, and we neglect the microscopic effects of inhomogeneous 
exchange interaction and of damping. Furthermore, the sample is assumed to be immersed 
in an external constant magnetic field, and saturated. 

In a previous paper [lo], it was shown that taking account of the damping in this system, 
the evolution of an electromagnetic perturbation of long wavelength is govemed by Burgers’ 
equation, which provided solutions that describe the propagation and the coalescence of 
travelling waves of determined phase velocity in (1 + 1) and (2 + 1) dimensions. 

In other work [7,11] the nonlinear modulation of amplitude of a monochromatic wave 
in a ferrite was studied. There the damping was neglected and the system reduced to the 
nonlinear Schrodinger equation (NU). As a result we showed the existence of a Benjamin- 
Feir instability and characterized it in terms of the physical parameters of the system. 

In this work, we deal again with monochromatic waves in the same medium, but instead 
of looking at the nonlinear self-interaction of the wave, we will consider the interaction of 
three waves. The idea of studying such a problem follows naturally from the observation 
that the dispersion relation of such waves contains three branches, two of which may be 
called ‘optic’, and the other ‘acoustic’. 

Equations (1) and (2) are reduced by the perturbative method of stretched coordinates 
to the 3wRI system, which is integrable by means of the IST method. This is possible only if 
some resonance condition is satisfied. We solve it in the general case by a graphic method, 
and give asymptotic values for the solutions for high frequencies. The behaviour of the 3WRI 
is characterized by the sign of the interaction coefficients and the relative magnitude of the 
velocities. We determine these quantities in terms of the physical parameters and discuss the 
type of interaction encountered. Among the three types of interaction that may be described 
by the 3WRI system, two occur here: one is called stimulated backscattering (SBs). This is 
the more general case of stimulated Brillouin scattering, where the acoustic wave is replaced 
by an electromagnetic wave: the wave with the highest velocity (an ‘optical‘ wave in most 
cases) is reflected by a wave of intermediate velocity (an ‘acoustic’ wave in most cases). 

The other one is called the soliton exchange interaction, and its most impomnt effect is 
that any soliton contained in the wave with intermediate velocity disappears, giving rise to 
two solitons, one in each of the other waves. This transfer appears as soon as the slightest 
amount of one of the two waves with extreme velocities is present in the interaction region 
(random noise is sufficient). 

The cases where 3WRI occurs, i.e. the solutions of the resonance condition obtained 
through ow graphic method, can be grouped into three classes. For two of them, all the 
waves may have large wavenumbers and the asymptotic solution can be derived. In this case 
the interaction is shown to be of SBS type, with or without change of polarization, depending 
on the class. For the third class, only two among the three frequencies are allowed to take 
arbitrary large values, and the third then has a finite limit. Therefore, the solution cannot be 
performed as completely as previously; we give results for the two particular cases where 
the propagation is parallel to the external field, and where the magnitude of the field is 
large. 
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Transition points between SBS and soliton exchange interaction appear in several cases; 
these transitions occur as the magnitude of the extemal Eeld passes through some critical 
values, which are algebraically and numerically calculated, but also as the angle between 
the external field and the propagation direction crosses critical values too. 

2. The formalism 

Consider first the dispersion relation of the system (I), (2). for a wave of pulsation w and 
wavenumber k, propagating in the x direction, in an external magnetic field ET" = a m  
such that the magnetization density is m = (mZ, mt,  0). It reads: 

The solutions w(k) of this equation are plotted in figure 1. The figure presents three 
branches: for each of them the polarization is entirely defined. There are two branches with 
positive helicity, which we call PO and PA, and one with negative helicity, N. Owing to 
the fact that as k -+ 0, w tends to WO = (1 -t a)m, (m = [[mil) on the PO branch, it 
may be called the optic one, and, conversely, branch PA may be called acoustic. The limit 
of w on the latter as k -+ fcm is OA = md- (q is such that m, = m cos (0, 

mt = m sinq). The third branch, N, behaves like the acoustic positive one for small values 
of k and like the iptic positive one for large values of k.  

w 

w 

w 

Figure 1. Dispersion relation o ( k )  of an electromagnetic wave in ferrite. P (N) refers to the 
positive (negative) helicity of the wave. 

The resonance condition of our interaction problem reads as follows: if (kj, wj)j=i,z,3 

are the wavenumbers and pulsations of the three waves, we must have (Brillouin selection 
rules): 

In section 3 we will see how this condition can be realized with dispersion relation (3). 
ki = k z + k 3  =U&+%. (4) 
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Both conditions (3) and (4) are obtained using a perturbative method, that leads to 
the reduction of the basic equations to the integrable 3WRI system. This method works as 
follows. Let 

#j = kjx - wjt 
j = 1,2,3, 

qLj = -4j 
(5) 

We expand H in series of powers of the $$j's and of a small parameter E in the following 
way: 

where 

n .  4 = n141+ nz42 fn343. 
HO is the constant exterior field in which the sample is immersed, and each of the quantities 
H,!"J + CC, j = 1,2,3, represents a monochromatic wave propagating with wavenumber 
kj and pulsation wj in the x direction. Expansion (6) thus represents three monochromatic 
waves of the same order of magnitude, immersed in a constant exterior field. The small 
quantity E is the ratio between the wave field and the exterior field. We expand the 
magnetization M in an analogous way. 

The amplitudes H,! of the three waves under consideration (and also the amplitudes H,: 
of the second harmonics) are assumed to vary slowly in time and space. Thus, according to 
the multiple scale expansion method, these quantities will depend on stretched coordinates 

and T defined by 

t = EX T = E t .  (7) 
In order to study an interaction between waves with different group velocities, we must 
choose the same order of magnitude for both time and space variables: every other choice 
selects a wave with a fixed group velocity. Furthermore, the scaling we choose means 
that the ratio between the typical length of the amplitude modulation and the wavelength 
is large, having an order of magnitude 1/&, the inverse of the ratio between the wave field 
and the exterior field. Making this choice, the first nonlinear term appears in the equations 
describing the interaction of the three waves. For a lower intensity of the incident waves, 
the nonlinear variation in the amplitudes occurs on a larger space scale (thus no interaction 
appears for the chosen scale). Conversely, if the intensity increases, the weakly nonlinear 
approximation that we intend to study here occurs at a smaller space scale (thus at the 
scale under consideration, we should have to fake into account the higher-order nonlinear 
interaction terms). 

We put these expansions into the basic equations (I), (2) and, collecting the terms order 
by order, we obtain (more detail on the derivation of these results is given in appendix A): 

(i) At order EO: Ho must be collinear to M". Let ci he such that H" = aM0, we 
choose the axes such that 

1MO=m=(m,,m, ,oj .  (8) 
(ii) At order E ' :  for each j = 1.2.3 we obtain 

Mj = m j g ,  
(9) 

where gj is an unknown function of ( f ,  T), and mj. hj are polarization vectors, functions 
of m, CY, wj ,  kj .  

Hj = hjgj 
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(iii) At order .sz, we see first that resonance condition (4) allows interaction terms to 
with those that come from the product of 

Writing the condition for the existence of the M,? terms, we obtain that gl, gz, g3 obey 

appear, equating terms proportional to 
.sMdeih by EM$&, and so on. 

the 3WRI system: 

where the vj are the group velocities of the waves: 
bj + 1 v. - 

I -  bl+1+yjfiju;” 

and the Aj the interaction constants (real): 

uj = ~ j / k j  
y j=1- l /u j2  f i j = = I + o r y j  

2 2  2 2  rj = yj 2 2  oj 

System (IO) can be reduced to 
bj = pjm,/yjwj .  

a a 
-q1 + vl-ql =SI¶&; 
ar ae 

a a 
7 3 3  + v3-43 aa = s3q;q; 

where the S j  are the signs of the Aj ,  by putting 

The system (15) (or (10)) is completely integrable by the IST method, and has been studied 
by many authors, see e.g. [12,41. 

In section 3 of this article, we will give a graphic solution of the resonance condition 
(4); in sections 4 and 5, we will study extensively the limiting case of high frequencies, for 
which asymptotic developments can be~given for the solution of the resonance condition, 
the group velocities and the interaction coefficients. Then, in each case, we will give a 
physical interpretation of the results, using the known solution of (15). 
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3. Graphic resolution of the resonance condition 

The wavenumbers kl, k2, k3 and pulsations W I ,  ~ 2 ,  y of the three waves must satisfy the 
resonance condition (4): 

ki =kz+k3 01 =@+Y 

and the dispersion relation (3), which can be written . .  
(17) 

where fi, pj are given by (146), and a, m = (mx, m,, 0) by (8). 
The complexity of (17) (the degree in o is 6) prevents any analytic solution of the 

whole problem. We can take the oj positive without loss of generality, but the kj may 
be positive or negative, corresponding to a propagation towards the x positiye or in the 
opposite direction. We can only fix the sign of one of them, let kl > 0. Let us call Mj 
the points of coordinates (kj. oj) in the (k, o) plane, 0 being the origin. Condition (4) 
means that OMzMlM3 is a parallelogram, i.e. that MZ and M3 are symmetric with respect 
to the mid-point A of [OMl]. Thus, for a given MI, you have only to constrtlct the curves 
(PA', NI, PO') symmetric to the graph (PA, N, PO) of the dispersion relation, with respect 
to A; the intersection of the branches (PA', NI, PO') and (PA, N, PO) gives the points that 
we seek. 

There are three cases to be considered, according to which of the three branches PA, N 
and PO contains MI. A permutation between Mz and M3 has no significant effect so we 
will often assume that w2 > y. 

(i) Mi E PO. Figure 2 gives the construction. We see that there are G o  solutions (la), 
(lb) with Mz on N, with opposite directions of propagation, and one (IC) with M2 on the 
same branch PO as MI, but in the opposite direction. In the three cases M3 is on the PA 
branch. In the fourth solution (Id), Mz and M3 are on the N branch, in opposite directions. 
In the fifth (le), MZ is on the N branch and M3 in the same branch OP as Mi, but in the 
opposite direction. 

2 -  2 2  $m: + fiPji(1 +ah, - yi oj 

0 

Figure 2. Construction solving the resonance condition (4), m e  MI E PO. 

(ii) MI E N. Figure 3 gives the construction. As in the lint case we have two solutions 
(2a), (2b) with Mz on the PO branch, with opposite directions of propagation, and one (2c) 
with Mz on the same branch N as MI, but in the opposite direction; in the three cases M3 is 
on the PA branch. No analogue to solutions (Id) and (le) exists here. Solution (2c) exists 
for every value of 0 1 ,  but solutions (Za), (2b) exist only if 01 is bigger than a certain value 
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0 

Fwe 3. Constmction solving the resonance condition (4), case Mi E N. 
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the order of magnitude of which is ut +WO (or is the limiting value of o on the PA branch 
as k ---f +CO, and 00 the value of o on the PO branch as k = 0). 

(iii) MI E PA. It is easy to see that in this case there is no solution. 

4. First and second classes of interaction: stimulated backscattering. 

The interaction occurring here is stimulated backscattering (SBS). As an ‘optical‘ wave 
encountem an ‘acoustic’ wave, with a small amount of power, the ‘optical’ wave is reflected, 
in a way analogous to stimulated Brillouin scattering. Some nonlinear properties of SBS 
have to be noted. First, a small amount of acoutic wave power stimulates the backscattering, 
but a large amount of it enhances the effect. Second, the acoustic wave increases during 
the interaction. This growth will soon stop the power transmission from the incident to 
the backscattered wave and, at least for long pulses, the amount of transmitted power 
is not very large. Furthermore, the amplitude of both acoustic and backscattered waves, 
after the interaction, shows a modulation oscillating in time and space. Note also that, 
when the solution of the 3wRI system has SBS-type behaviour, the so-called ‘incident’ and 
‘backscapered‘ waves do not necessarily have different directions in the laboratory frame. 
This is a consequence of the Galilean invariance of the 3 w ~ 1  system. 

We study first a set of solutions of the resonance condition for which the interaction is 
SBS-type, and also where the wave is backscattered in the usual sense. We divide this set 
into two classes, depending upon whether or not the backscattered waves belong to the same 
polarization mode as the incident wave. The first class (SBS with change of polarization) 
contains the following particular cases: (lb), where MI is on the PO branch, Mz on the 
N branch, with a negative wavenumber kz, and M3 on the PA branch; and (2b). which is 
similar to the previous one, except that MI is on the N branch and MZ on the PO one, the 
signs of kl and kz being unchanged. The second class of interaction (SBS without change of 
polarization) contains the two cases (IC). where MI and MZ are both in the PO branch, in 
opposite directions, and M3 on the PA branch, and (2c) which is similar to the latter except 
that Mi and Mz are both on the N branch. 

We can choose 01 = o as a free parameter in thii problem and, for large values of w,  
we can give explicit approximate expressions of all the quantities involved. The dispersion 
relation admits asymptotic developments so that, on branch PO, as o + +ca: 
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with 

m2 
8 

q = -[&I! + 1 + (1 -2u) sin’p] 

where m, 9 are defined by 

m, = mcosrg m, =msin(o. 

On the branch N, as 0 + +CO: 

mx 4 
2 0  

k = w + - - - + O  

On the branch PA, 0 tends to 

01 = mJu(u + sin2 (o) 

as k tends to infinity and we have 

To study the four cases (lb), (Zb), (IC) and (2c) we immediately inmoduce two parameters 
E = f l ,  q = f l  and write the following system verified by the (kj, 01): 

17 = +1 corresponds to the first class, and then, for 6 = +1, we get the case (lb) (MI on 
the PO branch) and for E = -1, the case (2b). 7 = -1 corresponds to the second class, 
and then, for E = +1, we get the case (IC) (MI and M2 on the PO branch) and for E = -1, 
the case (2c). 

By solving the system (24) at the limit 0 + +CO, we obtain the following solutions. 
(i) Using (1 l), the group velocities 

vz = -1 + 0 (2) 
so that 

v2 < v3 < VI. 
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(ii) Using (12). (13) and (A16), the interaction constants are: for the first class ( q  = l), 

with 

w4 sin9 
m3 a(a + sin’ rp)z 

A1 = -86- 

Az = -AI 
E m6 
16 w5 

A3 = --@(a + sin’rp))3’2cosZv,sinv,. 

We see~that, in each case, 
63 = 62 = -61 (30) 

where Sj = sgn(Aj). 
The two conditions (24) and (30) allow us to identify the type of 3WRI present. Here we 

are in the SBS case. The system does not admit any soliton solution, but is still integrable 
by the IST method. We refer the reader to the cited articles, particularly part V of [4], for 
this resolution. The principal effect is an energy transfer from the faster ( 0 1 .  kl) wave to 
the backscattered one (02, kz), stimulated by the ‘acoustic’ one (m, k3). In terms of the qj 
the transfer is almost complete if the amplitude of the third wave, although small relative to 
the first, is large enough. The fields are given in terms of the solution 41, 42, 43 of system 
(15) by 

H: = ifqi  
(31d 

H,! = i jq;  for j = 2 , 3  

M,! = 6iiq1 

M; = Ajq; for j = 2,3 
with, for the first class, 
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where K, is given by (28). For the second class we have: 

To answer the question whether the size of vector coefficienis f$, 6ij changes the transfer 
coefficients from wave 1 to wave 2 and so on, and thus the qualitative results obtained in 
solving system (15). we introduce an ‘effective nom’ 11. lies such that the mean value, in a 
duration large in regard to the t scale and small in regard to the r scale, of the first wave 
H,lei4> + ~ y ~ - i 4 1  uld be I(efi. 141 I, and so on. Thus 

llUllcff = m (36) 
for every complex vector U. 

Let us call R the factor due to these terms in the reflection coefficienf i.e. 

We see that, in every case, R = 1, so that the reflection coefficient calculated solving system 
(15) by the IST method is exactly the same as that which occurs here. Furthermore, we see 
that 

which order of magnitude is the relatively small number m. In regard to the amplitude 
of the first wave, the amplitudes of the ‘acoustic’ wave that occur in our problem are smaller 
than those given by the IST method resolution of (15) by this factor Q. 

5. Third dass of interactions: transition points between SBS and soliton exchange 
intemction 

This case is much more complex than either of the two preceding ones. It regroups the 
following solutions of the resonance condition: 

(i) (la)(ld)(le): where MI is on the PO branch, Mz on the N one, both with positive 
k: M3 tends to a finite limit as 01 = o tends to infinity, and may belong to every branch 
of the dispersion relation; we thus get the three subcases (la), (Id), (le). 

(ii) (2a) is analoguous to the preceding one but M2 is on PO and MI on N, and M3 is 
always on the PA branch. 

In order to deal with all these subcases at once, we must use new notation. Let us 
consider a PO wave (kp, op) with large positive kp and op, an N wave (kN, ON). k N  and 
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6 h  being also large and positive, and a third wave (kF, OF). with finite kF and OF (with no 
further assumption on them), such that 

W P = O N + O F  k p = k N + k F .  (39) 
We will find the (la), (Id), (le) cases for MI = MP, M 2  = MN, M3 = MF and the (2a) one 
for MI = MN, MZ = M p ,  M3(-kF, q). 

As previously,  we restrict ourselves to the case where the parameter w = wp is very 
large. 

We use the asymptotic developments (18) for kp as a function of wp = w, and (21) for 
kF as a function O f  ON = w - OF. At the limit w --f +CO, kF and OF verify the system 
formed by the dispersion relation (3) and the relation 

kp = OF -m, (40) 

obtained by reporting the expansions (18), (21) into (39). 

equation: 

[I +a!(l - ~ ~ ) ] ~ c o s * p +  (1 -x*)[I +a!(l -x*)](I +a) sin’p = (1 + X ) ~ C O S ~ ~ .  

The solution of this equation is, in the general case, very complicated, thus the whole 
discussion of the system’s behaviour can only be achieved in a few particular cases. 

First we see that we can restrict ourselves to rp E [O, $r]. By an appropriate choice 
of the orientation of the y axis, we can impose sinrp > 0. A change of sign of cosp 
corresponds to a change in the propagation direction. The P waves become the N ones and, 
conversely, in our equations but one can verify that no qualitative result is modified. 

Thus if we put X = kF/oF = l /UFI  X is a solution of the following fourth-degree 

(41) 

We have completely solved the problem in the following three particular cases: 
(i) an exterior field parallel to the propagation direction: p = 0; 
(ii) an exterior field perpendicular to the propagation direction: p = iz; 
(iii) a strong exterior field: a! + +W. 

However, in the second case the interaction coefficients vanish, and thus our pekurbation 
theory is no longer valid. No further mention of this case will be made in this paper, and we 
will give the results for the remaining two cases, that have an interesting physical meaning. 

The computation of the constants appearing in system (10) necessitates some technical 
work appendix B is devoted to the determination of the relative magnitude of the group 
velocities and the sign of the interaction constants that characterizes the type of interaction. 
Some more detail on the expression of the interaction constants is given in appendix C. The 
calculus works as follows: first we solve equation (41), that solves the resonance condition 
(section B. 1, equation (BZ)). Then the group velocities of the three waves can be calculated: 
both VN and Vp are close to 1 as o + +CO, their relative magnitude can be determined as 
(0 = 0, and also as a -+ +CO (section B.2). We find that VN > Vp for the cases (2a), (la), 
and (ld), and VN e Vp for the case (le). VF is then computed (equations (B1.5) to (B20)): 
in every case VF e 1, even at the l i t ,  thus VF .= VN, Vp. Next, we find the expressions 
for the interaction constants as functions of the parameter X, these are formulae (Bl) to 
(B26) in the third section of appendix B. The signs of Ap = -AN and AF depend mainly 
on the sign of quantities P p ( X ) ,  PF(X) defined by equations (B24), (B25). We replace X 
by the solutious (B2), (B4) in these expressions and determine their sign depending on the 
values of a! (for p = 0) and 

Summarizing all these results, we are able to discuss and describe the type of 3wRI 
involved depending on the cases and values of a, p. 

(as a --+ +CO) (equations (B27) to (B32)). 
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In addition to the SBS interaction, another and very rich interaction type occurs, which 
is called the soliton exchange interaction. For a complete description of the involved 
phenomena, we refer the reader to 141 (part N), of which we only recall here the main results. 
The most important effect is that any soliton contained in a wave with an intermediate 
velocity disappears, giving rise to two solitons, one in each wave. The word ‘contained’ 
has to be understood in terms of the number of normal modes in the Zakharov-Shabat 
(a) scattering data of the wave; i.e. the characteristic profile of this soliton does not need 
to appear in the initial wave but the daughter waves have the typical aspect of N-soliton 
solutions. This transfer appears as soon as the slightest amount of one of the two waves 
with extreme velocities is present in the interaction region; random noise is sufficient. A 
transfer of the radiation energy of the wave of intermediate velocity to one of the others 
is also possible. It OCCUIS when the third wave has a large amplitude. Transfer of solitons 
from the waves with extreme velocities to one with intermediate velocity is also possible, 
if the initial state contains one (or more) pair of resonant solitons (one in each wave). 
Afterwards the resultant soliton disappears, giving rise to the two initial solitons again. 
This interaction seems to be ineffective but is not: arbitrarily shaped pulses which in terms 
of the zs scattering data contain solitons that after the interaction take the shape of the usual 
N-soliton solution. 

Our results are as follows. 

We have here VF Case (IQ). Vp < VN. In the p = 0 case, if a < al, a1 N 0.465, 
6p = - 6 ~  = Sp thus the interaction is a soliton exchange; each soliton of the branch N gives 
rise to one soliton in the branch PA and one in the branch PO. If 01 > al, 8p = - 6 ~  = SF. 
Thus we have SBS of the wave P of PO type into the wave F of PA type (VF < 0). For large 
values of 01, the type of interaction depends on p: if 0 < p < (PO, where = arccos(-?), 
6p = -SN = SF. thus this is the SBS case; if po < ‘p < in, Sp = -SN = -SF it is soliton 
exchange. 

Case (Id). Here VF < Vp c VN. If 01 is large, we have 6, = -SN = SF, and this describes 
SBS of wave N to wave F (both of N type) (VF < 0). If p = 0, we have, in contrast, 
6~ = 6~ = -Sp , so that we have a soliton exchange interaction between wave P and both 
others. These two results may seem contradictory, but in fact the leading term of expression 
(B31a) for P p  as 01 4 foo vanishes at p = 0, thus this expression is no longer valid for 
‘p = 0. 

Case ( l e ) .  In this case VF < VN < Vp. For large values of a we do not have any transition 
between the two interaction types: we have for every value of p: Sp = -SN = -8, and 
SBS of the P wave to the F one. Note that the ‘backscattered’ wave has the same direction 
as the incident one. Putting (0 = 0, we have the ~~ same interaction type: SBS, except in a 
particular window: if 012 < 01 < 1 +,@. where a2 N 1.119, then Sp = - 8 ~  = SF and there 
is a soliton exchange between the P wave and both others. 

Case ( 2 ~ ) .  This is the last and simplest case: VF < VP < VN and SP = -SN = -&, and 
thus there is a soliton exchange interaction between the wave P and both others. 

6. Conclusion and perspectives 

We have studied the interaction of three waves in a ferromagnetic dielectric: first we have 
shown that it is governed by the integrable 3WR1 system, then we have classified the cases 

1 1 
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where a three-wave interaction occurs and, for high frequencies, we have performed a 
complete characterization of the solutions. For two classes of solution we have shown 
that the interaction is of SBS type ind, for the thud one, we saw that, as the strength of 
the exterior magnetic field or the angle between it and the propagation direction varies, 
transitions between two regimes, one where the interaction is of SBS type and one where it 
is soliton exchange, occur. 

We will pursue the nonlinear study of electromagnetic waves in ferromagnetic 
dielectrics, studying the non-resonant interaction of two waves; this should lead to a 
nonlinear Faraday effect. We also study wave modulation in 2 + 1 dimensions and, taking 
account of damping, the nonlinear propagation of a signal given at the origin of space. 
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Appendix A. Derivation of the 3wRI system 

In this appendix we want to show how we derive the 3wRI system (10) from the fundamental 
equations (l), (2). After rescaling it by 

M + -  t + ct (AI) P O ~ H  H+- 
C C 

and assuming that M ,  H depend on t and x only, (I), (2) become 

(-424 
a2 

- (HX+MX)=O 
at2 

(A3) 

We introduce the phases @j (5). the development of H (6). and an analogue development 
of M ,  and assume the resonance condition (4). 

Hie"'+ there are many terms proportional to 
e"I. Only the sum of all these terms can be defined in a unique way: we call it H;-"" ;~H? is 
a function of the stretched variables 5 .  r .  Let A be the set of all the indices n = (nl ,  n2. n3) 
such that &+ fe'ml for all j = f l ,  f2 or 43. 

We get the following expansion of H: 

a 
at 
-1M = -M A H .  

For j = rtl, f 2 , 1 3 ,  in the sum 

H = Ho + E  H,!e'" +E' Mfeiml + E' Hie'"'@ + O ( E ~ )  (A4) 
j j n€A 

We have the reality condition M i j  = M;*, and so on. We insert these expansions into 

At order E O ,  assuming that Ho,  MO are constants, we find only one condition: 

At order E ' ,  we get the following equations, for each j :  

and an analogous one for M. 

equations (A2a). (A2b), (A3), and collect terms of the same order in E .  

MO AHO = 0, so we may define a such that Ho = aMo =am. 

M,!,' +~H:." 0 
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iwjMj =m~[Hj -aMj ] .  646) 
For each value of j = 1,2,3, these equations constitute a linear homogeneous system for 

the components of H),  Mj. Each has non-trivial solutions only if the following condition 
(dispersion relation) holds: 

2 -  2 2 pjm: + y jp j ( l+  a)m, - yj oj 
where we put 

2 

r j  = 1 - (t) 

At order E ~ ,  we make no attempt to determine the terms in e".*, n E A; we only need 
to know that they are dowed to exist. Regarding the term proportional to gk, we obtain 
the equations: 

From (A10) we get, using (A9), 
M Y  = -H? 

J 

fors = y ,  z.  

Inserting these expressions into (All), we obtain a tinear 3 x 3 system for q?,", H,?, 
H,? for each j ;  the determinant of this system is proportional to 

and is thus zero, according to the dispersion relation. We replace one colunfn (the 
thud one) of the matrix of the system by the right-hand side of the latter, and cqmpute 
the corresponding determinant. This gives the condition for the existence of soyltions. 
Multiplying this condition by the constants: 

pjm: + y jp j ( l+  a)m: - yFmj 

-pjjUj2 1 
2 r j ~ j  (bj + 1 + yjpjju;) 

we obtain system (10). 
In this calculus one must pay attention to the term coming from 

Bj = M; AH,'. 
(w)/hMr=4j 
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We have 
B~ = M; AH!  -I- M; A H :  ( A W  

and the corresponding term in system (9) is Algzg~,  with A1 given by ( l l ) ,  (12). 
B2, B3 are slightly different: 

B~ = M: AH;' + M;* A H; (-415) 
giving rise to a term Azglg;, involving the complex conjugate of g3, and (still using (11)) 
there are some sign changes in the expression of A; in regard to A;: 

A; = ~ m x m t I - ~ ~ ~ l ~ 3 [ ~ 1 ( 1 -  M) + ~ ( 1  - ~ 1 ) l  

+P2YIY3[111@(1 - Y3) - P301(1 - Y1)l 
- n ( l  +a)(YI - Y3)[@3Yl01  f f i IY3@1}.  (A161 

B3 is wholly analogous to Bz, and gives rise to the term A3g&. The expression of 
A; is deduced from (A16) by permuting indices 2 and 3. 

Appendix B. Determination of the type of interaction for the third class 

In this appendix we give the asymptotic solutions of the resonance condition for the third 
class of interactions, and the corresponding calculus of velocities and interaction constants. 

Appendix B.I. Solutions of equation (41) 

General case. A graphic solution is given in tipre B1. We have plotted the dispersion 
relation o ( k )  and drawn the shaight line A of equation o = k + m,. The asymptotes of 
the branches PO and N of the dispersion relation are drawn with dotted lines; they have the 
equations w = k k  * $m,2. We obtain four solutions; each of which corresponds to one of 
the cases (Za), (la), (Id), (le) as given in figure B1. 

Figure Bi. Construction solving equation (46). 

Because X = k p / o p ,  we get from the graphic the following inequalities: 

Xla < XId < -1 < 0 < Xle  < 1 < x& (B 1) 



X 

+1 

0 

-1 

0 

-1 

Figure B3. Plot of X = kp/m as a function of a for a given yr (~p = $r) 

A numerical solution may be obtained; we give two plots of X, in figure B2 as a 
function of sin’ p for a given 01, in figure B3 as a function of 01 for a given value of 9. This 
numerical approach shows that the variation in X as a function of 01 and p is weak, thus 
we may hope that the description of the two particular cases p = 0 and a + $00 give 
a reasonable approximate description of the general case. Furthermore we can see that the 
approximate solution we give below is a really good one, e.g. for 01 = 2 and p = $, we 
get Xk N 1.445 from the formula (B4d) and Xk N 1.464 numerically. For 01 = 2, we get 
from formula (B4a) XI. N 1.25, and the numerically calculated XI, varies from -1.225 
for p = ?n to -1.28 for p = 0. 1 

Case (p = 0. We obtain the solutions: 

- 
- 

~~ ~ sidp 
1 

with 

XI, = x-+ Xld = x++ XI, = x-- x2a = x+-. (B3) 
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Case 0 + +CO. We obtain: 

In the calculus of the velocity VF an extra term is necessary for the (la) case: 

Appendix B.2. Calculus of velocities 

Appendix B.2.1. 
development of k: 

Waves with large values of w. We use the following asymptotic 

where E = +1 for the PO wave, and -1 for the N wave, q is given by (19) and w by 
m3 

128 cos rp 
W =  [S + 280 + 35a2 + 40(2 + 7a) cos Zrp + a(a - 4) cos 4rpl 

using (B5) in (11) we obtain 

Now we calculate Vp, the velocity of a PO wave ( E  = +I) with wp = w >> 1, and vN, the 
velocity of an N wave ( E  = -1) with wN = w - wF; we obtain 

Thus 

VN > Vp when WF < OF, 

where 

OF! = -2wfq. 

Case rp = 0. We obtain 

1 f 4 0  + 801' 
1 +4cY 

OF! = m 

OF can be expressed as a function of X as follows. 

(BlOa) 

(Blob) 

and inserting the solution (B2) into (B12). we write the condition (B10) and obtain the 
following result: for the cases (Za), (la) and (Id), VN > Vp, and for the case (le) VN < Vp. 
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Care a + +W. We obtain 
ma 35 + 28cos2p fcos4p  

wF1 - 8 cos p(3 + cos 2fp) 

inserting the solution (B4) into @12), we can explicit the condition (B10) and thus we get 
VN z Vp for the cases (la), (Id), (2a) and VN < Vp for the case (le). Note that the result 
is the same in both cases. 

Appendix 8.2.2. Wave (kF, WF). Using (11), we obtain the expression for the third wave 
velocity VF as a function of the solution X 

Case (0 = 0. The solution X is given by @2) for E = +l: we obtain 

) (BW 
2 + 15a + Sa2 + q(2+ 7a + 4~!')d1+ Sa +h2 

5 + 4% + 28a' + 4or3 ( v, = - 

q = +1 corresponds to case (ld), q = -1 to case (2a). 
For E = +l we obtain 

q = +l corresponds to case (la), q = -1 to case (le). 

in the (la) case 
Case a ----f +W. Using the asymptotic values (B4XB5) of X in (B14) we obtain: 

in the (Id) case 

in the two other cases 
V,=l - - f  A (14 + 2 COS' p)i, - 3 sin' p 

a 5 + 3 cos2q - 2 ~ ,  sin' p 
where 

is such that X = 1 +A& + O(l/a2). The (Za) case is obtained for E = +1, the (le) one 
for E = -1. 

Appendix B.3. Computation of the A,, AI, A3 coefficients 

Appendix 8.3.1. General properties. We use the expansions (18) and (21) of kp and kN 
in the expressions (13), (A16) of AN, Ap, AF (these expressions are correct if we put 
(P, N, F) (1,2,3) because they assume that w1 = w2 + f%, kl = kz + k3 and nothing on 
the signs of the wj and kj). We obtain first that 

AN = -Ap 0321) 
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at leading order in U. Then we get the expressions of AN and Ap as functions of X .  They 
read as follows. 

where 

P P ( X )  = (1 - X2)[1+ u(l - XZ)l[Zar + (1 -a)  SinZrpl 

+2COSZy,([l + a(1 - X2)1[(2 - a) ( l  - XZ)  - 11 
+(1 + X ) W  + a)(l - X 2 )  - 11) 

+2cos2y,(2(1 - X)(1+ a)[a(l - XZ)  - 11 + (a - 2)(1 - X2) + 2 +  X) 

(Bw 
% ( X )  =-(I  -x2)[2a! + (1 -LY)shzV][l +2(1 +a)(1 - x ) ]  

(BE) 
D F ( X )  =X2([1+a(l -X2)]2+(1+X)2)+(1+X)Z(1-XZ)[1+a(l  -X2)]. (B26) 

In the two particular cases y, = 0 and a -+ +CO, we can give more explicit expressions 
for these terms and determine their signs. 

Appendix B.3.2. Case 9 = 0. If E = 1, we obtain the expressions: 

(The reader is referred to (€33) to know to which of the cases (la), (Id), (le) and (2a) 
corresponds each value of (E ,  q).)  We see that P p ( X )  has the sign of q ,  and P F ( X )  the 
opposite sign. 

If E = -1, we get the expressions: 

1 
a3 

P p ( X )  = - [4 - 3a + 9az - Za3 + q(4 - 3a + a 2 ) d G ]  (EiZ8a) 

1 %(X) = 2 [2 - 3a - 2 2  - 4 f 3  + q(2 - 3a - ?a2)-]. (B286) 

For q = +1, Pp(X) is always positive, but for q = -1, its sign changes depending on a: 
P p ( X )  >Oi fandon ly i f a<  I+,&. The sign of P F ( X )  is not constant either: it depends 
on the position of a in relation to the two values 011, a2 defined as the two positive roots 
of the equation: 

-4 +Sa +Sa2 - 8a3 = 0 (€329) 

with 011 < az.  We have 011 N 0.465 and az 2: 1.119. 
For 11 = +1, PF 0 if and only if a i a,. 
For ti = -1, 'p, > 0 if and only if a > az. 
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Appendix B.3.3. Case a! -+ +w Case (la). We obtain the expressions: 

2 cos2 $0 Pp(X) = - 
a! 

%(X) is always positive, but the sign of PF(X) depends on p. Let 
then 'PF(X) t 0 if and only if v, .= ' p ~  (for p E [0, fn[). 

= arccos(-f), 

Case (Id). We obtain the expressions: 

?F(X) = -2Cos2v,(3fcos2'p)a!+0(1). 

Both Pp(X)  and Pp(X) are always negative. 
Cases (le)-@). We obtain the expressions: 

.. 

x ~ + 2 c o s 2 p + & ~ 2 ( 6 7 + 6 0 c o s 2 p + c o s 4 ~ ) ]  

(B31a) 

(B31b) 

where E = +I in the case (2a) and E = -1 in the case (le). Here we have always 
Pp(X) < 0, and thus PF(X) > 0. 

DF is always positive; in fact, VF = x[(1 +U( 1 - Xz)) + (1 + X)']/DF, so that D p  has 
the same sign as VFX = VF/UF, and this quotient of group and phase velocities cannot be 
negative. Other factors are (1 - X) with hown sign, and [l + a(1- Xz)] = p~ which is 
negative only when MF is on the branch PA. 

Summarizing the data in this appendix, we obtain the results described in section 5. 

Appendix C. Interaction coefliuents in the cases (la) (la) (le) and (2a) 

Ap is given by (BZ), where P p ( X ) ,  given by (SZa), has the expressions (B27a), (BZSa), 
(B30a), (B31a), (B32) depending on the case. Expressions for AF are more complicated. 

First we rewrite (B25) as 

where PF = 1 + a!(l - p). 
We will give expressions for p ~ / ( l  - X) and %(X) in every studied case (PF(X) 

has the expressions (B27b), (B28b), (B30b), (B31b). (B32) depending on the case) without 
attempting to reduce further the expression of AF itself. 

Case 'p = 0. If E = +1, 

DF(X) = --[1+15~+71a!Z+116a!3+60~4+8~5 1 
za!5 

- t l (~  + 1 la! + 3 3 J  + 2 h 3  + 4 a ! 4 ) J W ] .  ( C W  

If E = -1, 



Transition between SBS and soliton exchange in ferrites 268 1 

In both cases, 

(C3) 
ILF 4~ + 2(1 + E )  - vJl + 4(1+ E)O + 4a2 -- - 

1 - x  2(E + 2) 

(la): (-, +) (ld): (+, +) (le): (-, -) (2a): (+, -). 

We recall the values of (E ,  7) corresponding to each case: 

Case a + +CO. For case (la), we need a development of X to the third order in a: 
1 1 2COS2Y,+1  1 xl, = -1 - - +- - - + 0 (i). 2a  8a2 16sinZm a3 

We obtain 

For case (Id), we obtain 

%(x) = sin4 0 + o 
. .  

-=- wF sin'p +O(:). 1 - x  2 
For the cases (2a) (E = +1) and (le) (E = -1). we obtain 
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